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Abstract—In this paper address quantitative Assessment of 

Taekwondo coaching strategies. Based on MediaPipe Pose 

estimation, the system extracts precise body landmark 

coordinates from video recordings of fast and continuous 

Taekwondo actions. Due to the high-speed and dynamic nature 

of these movements, pose estimation often suffers from detection 

errors. To mitigate such inaccuracies, we propose a Kalman 

filter-based correction method, supplemented by an anomaly 

detection technique based on the Interquartile Range (IQR), to 

improve temporal coherence of the landmark data. 

Experimental evaluation shows that our approach corrects 

approximately 4.107% of erroneous MediaPipe detections, and 

further analysis reveals a 37.21% enhancement in movement 

stability metrics for the athletes. 

Keywords—MediaPipe, Kalman Filter, Taekwondo, 
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I. INTRODUCTION 

In recent years, the field of Human Action 

Recognition (HAR) technologies, the field has evolved 

from early reliance on wearable sensors and traditional 

machine learning methods to the use of deep learning 

for visual-based action analysis, resulting in significant 

improvements in both the accuracy and real-time 

performance of motion tracking[1]. Although object 

detection models such as YOLO can rapidly localize the 

human body, they only provide bounding box 

information and are unable to precisely analyze joint 

movements[2]. The development of OpenPose has 

enabled real-time localization and tracking of multiple 

human keypoints, driving progress in sports science 

and interactive systems[3]. However, the computational 

demands of OpenPose, particularl its relance on GPU 

resources, pose challenges on edge devices such as 

smartphones and wearables. MediaPipe Pose is a real-

time pose estimation model based on the BlazePose 

architecture, integrating deep learning with efficient 

image processing techniques. This model is capable of 

detecting 33 human keypoints, with particular accuracy 

in capturing subtle movements of the face, hands, and 

lower limbs[4]. In sports analysis applications, 

MediaPipe Pose can quickly and accurately localize 

human keypoints on mobile devices, demonstrating 

excellent accuracy and real-time performance across 

various sports scenarios[5]. Therefore, this study adopts 

MediaPipe Pose as the tool for human pose data 

acquisition. 

In the application of human pose detection and 

motion analysis, although MediaPipe’s keypoint 

detection technology can provide real-time skeletal 

coordinates, practical deployment often encounters 

issues such as sensor noise, occlusion of body parts, and 

rapid movement changes. These may result in 

discontinuities or noticeable jitter in keypoint 

localization, leading to errors in keypoint estimation[6]. 

To enhance the stability and quality of keypoint data, 

this study introduces the Kalman Filter for correction. 

The Kalman Filter leverages the system’s dynamic 

model, combining previous and current data to predict 

the next state, effectively smoothing continuous data 

and reducing errors caused by noise, occlusion, or 

abrupt motion changes[7], thereby producing more 

stable pose estimation results[8]. 

Furthermore, in this paper, the quality of motion 

tracking is evaluated through both time-domain and 

frequency-domain analyses to comprehensively 

examine the stability and consistency of athletes’ 

movements. Time-domain analysis focuses on changes 

in motion over time and can be used to quantify features 

such as velocity, acceleration, mean, and standard 

deviation[9]. Frequency-domain analysis, through the 

use of Fast Fourier Transform (FFT), converts time series 

data into the frequency domain, revealing the 

periodicity of athletic movements[10]. 



II. PROPOSED METHOD 

A. Keypoint Data Acquisition and Preprocessing 

 Human pose estimation was performed using the 

MediaPipe Pose framework, which is based on the 

BlazePose architecture and enables real-time detection 

of 33 human keypoints, as illustrated in Fig. 1. 

Considering the characteristics of the Taekwondo 

spinning kick, all video data were sampled at a frame 

rate of 60 frames per second. Each frame was extracted 

using OpenCV, and the corresponding keypoint 

coordinates were obtained through the MediaPipe 

Holistic model. To minimize proportional errors caused 

by variations in camera distance or angle, this study 

adopted the Euclidean distance between the right 

shoulder 
12p  and right hip 

24p  as a reference for 

coordinate normalization. To further analyze the 

characteristics of the spinning kick, the velocity of the 

right ankle 
28p  keypoint, which is primarily engaged 

during the kick, were calculated based on the 

normalized keypoint coordinates. The velocity was 

determined by dividing the displacement in pixels of the 

keypoint between adjacent frames by the time interval 

between frames (1/60 seconds). 

 

Fig. 1 Keypoints of the athlete performing the 

Taekwondo spinning kick were detected using 

MediaPipe Pose. 
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where 
refL  is  the reference length value, T represents 

the number of frames during which the subject remains 

stationary prior to initiating the movement, and

   12 24|| ||p t p t  represents the pixel distance between 

the right shoulder and right hip,  t  the ratio for 

converting pixel measurements to actual length, H  

represents the actual distance between the right 

shoulder and right hip , 
28pd  is the displacement of the 

right ankle keypoint between frame t  and frame 1t  , 

28pv  denotes the velocity, S  is the total number of 

frames for each measurement. 

B. Anomaly Detection and Dynamic Correction 

Due to the rapid kicking motions of Taekwondo 

athletes, misidentification of keypoints can occur, as 

illustrated in Fig. 2. In the time domain, these errors are 

also evident as significant fluctuations in keypoint 

trajectories. Therefore, this study employs interquartile 

range (IQR) outlier detection and Kalman filter based 

dynamic correction to address keypoint anomalies. 

 

Fig. 2 Error detection of the right ankle keypoint 

a. IQR anomaly detection 

To detect anomalies, this study employs the IQR 

method to analyze outliers in the normalized velocity 

sequence of the right ankle keypoint, denoted as 
28v . 

Specifically, the first quartile (
1Q , 25th percentile), the 

third quartile(
3Q , 75th percentile), and the interquartile 

range (
3 1IQR Q Q  ) are used to measure the 

variability of the central 50% of the data. 

To assess outliers within the dataset, the anomaly 

detection threshold is set at 1.5 times the IQR. This 

threshold is a classical statistical criterion for 

identifying outliers and is widely adopted in anomaly 

detection applications[11].  

 
3 1.5Threshold Q IQR    (5) 

b. Kalman Filter Based Dynamic Correction 

To correct the anomalies detected by the IQR method, 

this paper employs a first-order Kalman filter to 

construct a dynamic system model, using two-

dimensional position and velocity as the state vector. 

This approach enables recursive estimation and 

correction of anomalies within the continuous time 

series data. 
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where  ( ) ( ) ( ) ( )
t

x yp t x t y t v t v t     denotes the 

state vector at frame t , A  is the state matrix, and  w t  

represents Gaussian white noise with zero mean and 

unit variance. 

In summary, this study detects keypoint 

anomalies using the IQR method. The Kalman filter, 

leveraging its ability to estimate future positions based 

on historical state information, is further applied for 

dynamic correction. This approach maintains the 

continuity of keypoint trajectories and ensures the 

stability of subsequent data. 

C. Time-Frequency Analysis 

To further investigate the changes in athletes’ 

movements before and after Taekwondo training, this 

study evaluates the stability and consistency of the 

actions from different perspectives in both the time 

domain and the frequency domain.  

In the time domain, the normalized displacement is 

calculated as shown in (3), and its mean and standard 

deviation are subsequently determined. 
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where  
28pd t  denotes the displacement from frame t  

to frame 1t  , and   represents the Euclidean distance, 

which is the distance between the coordinates of the 

right ankle keypoint at the current and subsequent 

frames.
28pd  indicates the mean displacement, while 

28pd  is the standard deviation of the displacement. 

In the frequency domain, the y-axis coordinate of 

keypoint  p t  is subjected to a Fast Fourier Transform 

(FFT), which is defined as follows: 

    
1

2 /

0

S
j ft S

t

P f p t e 






   (9) 

Here,  P f  is the Discrete Fourier Transform of the 

sequence  p t , S  is the total number of frames. The 

analysis utilizes features such as the dominant 

frequency, peak power, spectral centroid, and spectral 

bandwidth. 

  , arg max
maxdominant k max k

k
f f k Y f   (10) 

where
kf  is the k -th frequency component,  kY f  

represents the Fourier transform result at the k -th 

frequency, and  kY f  is its magnitude. 
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peakP  represents the power at the dominant frequency 

component, with units in the square of the original 

signal unit (pixels squared). 
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It represents the proportion of the dominant frequency 

magnitude to the sum of magnitudes across all 

frequencies. 
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First, the spectral centroid is calculated as the weighted 

mean of the frequencies, where 
kf  denotes the k -th 

frequency component and  kY f  represents the 

magnitude at the k -th frequency. Subsequently, the 

spectral bandwidth is computed as the weighted 

standard deviation of the frequencies relative to the 

centroid. 
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where. Since the Fourier transform of a real-valued 

signal yields a conjugate symmetric spectrum, this 

study analyzes only the spectrum from 0 to the Nyquist 

frequency[12]. 

By integrating time-domain and frequency-

domain analyses, the results and effects of coaching on 

Taekwondo athletes can be reflected both temporally 

and spectrally. 

III. EXPERIMENTAL RESULT 

 This study conducted a three-month kicking training 

follow-up on two Taekwondo athletes: Student A, a 

third-year university student with a height of 179 cm, a 

weight of 49 kg, and a best competition result of third 

place at the National High School Games; and Student 

B, a first-year university student with a height of 174 cm, 

a weight of 55 kg, and a best competition result also of 

third place at the National High School Games. 

 For the correction of keypoint anomalies, Fig. 3 

illustrates the temporal variation of Student A’s right 

ankle during the second training session. In the figure, 

the gray line represents the raw data, the orange line 

indicates the data after correction by the Kalman filter, 

and the red crosses mark the anomalies detected by the 

IQR method. In Fig. 4, 1.62% of the data points are 



identified as anomalies, while 4.13% of the keypoints in 

Student B’s total training data were corrected. 

 

Fig. 3 Time-Domain Plot Before Correction 

 
Fig. 4 Time-Domain Plot After Correction by the Kalman 

Filter 

In Fig. 3, the red crosses indicate the original erroneous 

values of the detected anomalies, while Fig. 4 presents 

the values of these anomalies after correction. 

In the time-domain analysis, the temporal 

characteristics of the kicking motion—including 

average kicking height and standard deviation—were 

evaluated after one month and three months of training. 

After one month, Student A’s average kicking height 

increased by 15.9%, and the standard deviation 

decreased by 11.7%. For Student B, the average kicking 

height increased by 14.4%, and the standard deviation 

decreased by 13.1%, indicating improved movement 

stability. After three months, Student A’s average 

kicking height decreased by 1.8%, with the standard 

deviation remaining unchanged, while Student B’s 

average kicking height increased by 6.7%, and the 

standard deviation decreased by 69.6%. The significant 

reduction in standard deviation for both athletes after 

three months reflects a trend toward more consistent 

performance. 

 

Fig. 5 Spectrogram of Student A’s Training Over Three 

Months 

 
Fig. 6 Spectrogram of Student B’s Training Over Three 

Months 

In the frequency-domain analysis, the 

frequency-domain characteristics of the kicking 

motion—including dominant frequency, peak power, 

spectral centroid, and spectral bandwidth—were 

compared at the beginning, after one month, and after 

three months of training. After one month, Student A’s 

dominant frequency decreased from 2.13 Hz to 2.06 Hz, 

peak power increased from 901.25 to 981.62, spectral 

centroid decreased from 0.087 to 0.077, and spectral 

bandwidth increased from 8.33 Hz to 8.6 Hz. For 

Student B, the dominant frequency decreased from 1.87 

Hz to 1.64 Hz, peak power decreased from 3075.71 to 

2693.65, spectral centroid increased from 0.183 to 0.206, 

and spectral bandwidth decreased from 8.58 Hz to 6.94 

Hz. 

After three months, Student A’s dominant 

frequency decreased from 2.13 Hz to 1.65 Hz, peak 

power increased from 901.25 to 2181.18, spectral 

centroid increased from 0.087 to 0.283, and spectral 

bandwidth decreased from 8.33 Hz to 7.85 Hz. For 

Student B, the dominant frequency decreased from 1.87 

Hz to 0.1 Hz, peak power decreased from 3075.71 to 

41.21, spectral centroid decreased from 0.183 to 0.025, 

and spectral bandwidth decreased from 8.53 Hz to 8.33 

Hz. 

Based on the above results, it can be concluded 

that the dominant frequency for the male student 

continuously decreased, indicating a longer kicking 

cycle and a slower rhythm. The significant increase in 

peak power suggests improvements in both movement 

stability and explosiveness. The spectral centroid 

initially decreased and then increased substantially, 

reflecting enhanced coordination and consistency of 

movements after three months of training. The spectral 

bandwidth first increased and then decreased, with the 

final energy distribution becoming more concentrated 

around the dominant frequency, indicating more 

precise movement control. 



In contrast, the female student exhibited a 

substantial decrease in dominant frequency after three 

months, along with marked reductions in peak power 

and spectral centroid. This may reflect poor adaptation 

to training or the influence of other external factors, 

resulting in decreased movement performance and 

stability. 

IV. CONCLUSION 

 This study developed a Taekwondo motion analysis 

workflow that integrates MediaPipe keypoint extraction, 

IQR-based anomaly detection, and data refinement  

using a Kalman filter. The workflow effectively 

rerefining the quality of motion data, supporting 

accurate downstream analysis.. The training outcomes 

of athletes were quantitatively assessed through both 

time-domain and frequency-domain analyses. 

Experimental results indicate that, on average, 

approximately 4.107% of keypoint data  required 

correction, which contributed to improved accuracy in 

subsequent analyses. By further combining time-

domain and frequency-domain analyses, the training 

effectiveness of the athletes was quantitatively 

evaluated. 

 After training, Student A demonstrated 

improvements in both kicking height and stability, with 

energy distribution becoming more concentrated and 

movement performance more consistent. Student B 

exhibited a continuous increase in kicking height and a 

marked enhancement in stability; however, after three 

months, a noticeable decrease in kicking frequency was 

observed, and the energy distribution became more 

dispersed. Overall, both students showed progress in 

movement stability and quality following training, 

though the trends in their performance varied. 

Therefore, coaches can design customized training 

programs tailored to the specific characteristics and 

needs of individual athletes. 

This study utilized MediaPipe to detect Taekwondo 

athletes’ kicking motions, enabling real-time acquisition 

of keypoint data and subsequent motion analysis to 

assist coaches in dynamically correcting athletes’ 

movements. Through quantitative data analysis, 

coaches can more accurately assess athletes’ 

performance and use this information to adjust training 

programs, thereby enhancing training efficiency and 

movement quality. Furthermore, this automated 

analytical approach facilitates long-term tracking of 

athletes’ technical progress, providing a scientific basis 

for Taekwondo training.
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