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Abstract—In this paper address quantitative Assessment of
Taekwondo coaching strategies. Based on MediaPipe Pose
estimation, the system extracts precise body landmark
coordinates from video recordings of fast and continuous
Taekwondo actions. Due to the high-speed and dynamic nature
of these movements, pose estimation often suffers from detection
errors. To mitigate such inaccuracies, we propose a Kalman
filter-based correction method, supplemented by an anomaly
detection technique based on the Interquartile Range (IQR), to
improve temporal coherence of the landmark data.
Experimental evaluation shows that our approach corrects
approximately 4.107% of erroneous MediaPipe detections, and
further analysis reveals a 37.21% enhancement in movement
stability metrics for the athletes.
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I.  INTRODUCTION

In recent years, the field of Human Action
Recognition (HAR) technologies, the field has evolved
from early reliance on wearable sensors and traditional
machine learning methods to the use of deep learning
for visual-based action analysis, resulting in significant
improvements in both the accuracy and real-time
performance of motion tracking[1]. Although object
detection models such as YOLO can rapidly localize the
human body, they only provide bounding box
information and are unable to precisely analyze joint
movements[2]. The development of OpenPose has
enabled real-time localization and tracking of multiple
human keypoints, driving progress in sports science
and interactive systems[3]. However, the computational
demands of OpenPose, particularl its relance on GPU
resources, pose challenges on edge devices such as
smartphones and wearables. MediaPipe Pose is a real-
time pose estimation model based on the BlazePose
architecture, integrating deep learning with efficient
image processing techniques. This model is capable of
detecting 33 human keypoints, with particular accuracy
in capturing subtle movements of the face, hands, and
lower limbs[4]. In sports analysis applications,
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MediaPipe Pose can quickly and accurately localize
human keypoints on mobile devices, demonstrating
excellent accuracy and real-time performance across
various sports scenarios[5]. Therefore, this study adopts
MediaPipe Pose as the tool for human pose data
acquisition.

In the application of human pose detection and
motion analysis, although MediaPipe’s keypoint
detection technology can provide real-time skeletal
coordinates, practical deployment often encounters
issues such as sensor noise, occlusion of body parts, and
rapid movement changes. These may result in
discontinuities or noticeable jitter in keypoint
localization, leading to errors in keypoint estimation[6].
To enhance the stability and quality of keypoint data,
this study introduces the Kalman Filter for correction.
The Kalman Filter leverages the system’s dynamic
model, combining previous and current data to predict
the next state, effectively smoothing continuous data
and reducing errors caused by noise, occlusion, or
abrupt motion changes[7], thereby producing more
stable pose estimation results[8].

Furthermore, in this paper, the quality of motion
tracking is evaluated through both time-domain and
frequency-domain analyses to comprehensively
examine the stability and consistency of athletes’
movements. Time-domain analysis focuses on changes
in motion over time and can be used to quantify features
such as velocity, acceleration, mean, and standard
deviation[9]. Frequency-domain analysis, through the
use of Fast Fourier Transform (FFT), converts time series
data into the frequency domain, revealing the
periodicity of athletic movements[10].



Il.  PROPOSED METHOD

A. Keypoint Data Acquisition and Preprocessing

Human pose estimation was performed using the
MediaPipe Pose framework, which is based on the
BlazePose architecture and enables real-time detection
of 33 human keypoints, as illustrated in Fig. 1.
Considering the characteristics of the Taekwondo
spinning kick, all video data were sampled at a frame
rate of 60 frames per second. Each frame was extracted
using OpenCV, and the corresponding keypoint
coordinates were obtained through the MediaPipe
Holistic model. To minimize proportional errors caused
by variations in camera distance or angle, this study
adopted the Euclidean distance between the right
shoulder p, and right hip p, as a reference for
coordinate normalization. To further analyze the
characteristics of the spinning kick, the velocity of the
right ankle p,, keypoint, which is primarily engaged

during the kick, were calculated based on the
normalized keypoint coordinates. The velocity was
determined by dividing the displacement in pixels of the
keypoint between adjacent frames by the time interval
between frames (1/60 seconds).

Fig. 1 Keypoints of the athlete performing the
Taekwondo spinning kick were detected using

MediaPipe Pose.
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where L is the reference length value, T represents

the number of frames during which the subject remains
stationary prior to initiating the movement, and
1P, (t)— (% (t) || represents the pixel distance between

the right shoulder and right hip, «(t) the ratio for

converting pixel measurements to actual length, H
represents the actual distance between the right

shoulder and right hip, d is the displacement of the

Pag
right ankle keypoint between frame t and frame t+1,

V.. denotes the velocity, S is the total number of

frames for each measurement.

B. Anomaly Detection and Dynamic Correction

Due to the rapid kicking motions of Taekwondo
athletes, misidentification of keypoints can occur, as
illustrated in Fig. 2. In the time domain, these errors are
also evident as significant fluctuations in keypoint
trajectories. Therefore, this study employs interquartile
range (IQR) outlier detection and Kalman filter based
dynamic correction to address keypoint anomalies.

Fig. 2 Error detection of the right ankle keypoint
a. IQR anomaly detection
To detect anomalies, this study employs the IQR
method to analyze outliers in the normalized velocity
sequence of the right ankle keypoint, denoted as v, .

Specifically, the first quartile (Q,, 25th percentile), the
third quartile( Q,, 75th percentile), and the interquartile
range ( IQR=Q,-Q, ) are used to measure the

variability of the central 50% of the data.
To assess outliers within the dataset, the anomaly
detection threshold is set at 1.5 times the IQR. This
threshold is a classical statistical criterion for
identifying outliers and is widely adopted in anomaly
detection applications[11].

Threshold =Q, +1.5x IQR 5)

b.  Kalman Filter Based Dynamic Correction

To correct the anomalies detected by the IQR method,
this paper employs a first-order Kalman filter to
construct a dynamic system model, using two-
dimensional position and velocity as the state vector.
This approach enables recursive estimation and
correction of anomalies within the continuous time
series data.
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where p®)=[x®) y(t) v,() v,(t)] denotes the

state vector at frame t, A is the state matrix, and W(t)

represents Gaussian white noise with zero mean and
unit variance.

In summary, this study detects keypoint
anomalies using the IQR method. The Kalman filter,
leveraging its ability to estimate future positions based
on historical state information, is further applied for
dynamic correction. This approach maintains the
continuity of keypoint trajectories and ensures the
stability of subsequent data.

C. Time-Frequency Analysis

To further investigate the changes in athletes’
movements before and after Taekwondo training, this
study evaluates the stability and consistency of the
actions from different perspectives in both the time
domain and the frequency domain.

In the time domain, the normalized displacement is
calculated as shown in (3), and its mean and standard
deviation are subsequently determined.
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whered, (t) denotes the displacement from frame t

to frame t+1, and |||| represents the Euclidean distance,
which is the distance between the coordinates of the
right ankle keypoint at the current and subsequent

frames. d. o, indicates the mean displacement, while

od, is the standard deviation of the displacement.

In the frequency domain, the y-axis coordinate of
keypoint p(t) is subjected to a Fast Fourier Transform

(FFT), which is defined as follows:
$-1 A
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Here, P(f) is the Discrete Fourier Transform of the

sequence p(t), S is the total number of frames. The

analysis utilizes features such as the dominant
frequency, peak power, spectral centroid, and spectral
bandwidth.
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where f, is the k -th frequency component, Y (f,)

represents the Fourier transform result at the k -th

frequency, and |Y ( f, )| is its magnitude.
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P.a represents the power at the dominant frequency

(11)

component, with units in the square of the original
signal unit (pixels squared).
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It represents the proportion of the dominant frequency
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magnitude to the sum of magnitudes across all

frequencies.
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First, the spectral centroid is calculated as the weighted
mean of the frequencies, where f, denotes the k -th

frequency component and |Y(fk )| represents the

magnitude at the k -th frequency. Subsequently, the
spectral bandwidth is computed as the weighted
standard deviation of the frequencies relative to the

BW = Ziﬁ)_l( fk B fcentroid )2 |Y ( fk )|
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where. Since the Fourier transform of a real-valued

centroid.

(14)

signal yields a conjugate symmetric spectrum, this
study analyzes only the spectrum from 0 to the Nyquist
frequency[12].

By integrating time-domain and frequency-
domain analyses, the results and effects of coaching on
Taekwondo athletes can be reflected both temporally
and spectrally.

I1l.  EXPERIMENTAL RESULT

This study conducted a three-month kicking training
follow-up on two Taekwondo athletes: Student A, a
third-year university student with a height of 179 cm, a
weight of 49 kg, and a best competition result of third
place at the National High School Games; and Student
B, a first-year university student with a height of 174 cm,
a weight of 55 kg, and a best competition result also of
third place at the National High School Games.

For the correction of keypoint anomalies, Fig. 3
illustrates the temporal variation of Student A’s right
ankle during the second training session. In the figure,
the gray line represents the raw data, the orange line
indicates the data after correction by the Kalman filter,
and the red crosses mark the anomalies detected by the
IOR method. In Fig. 4, 1.62% of the data points are



identified as anomalies, while 4.13% of the keypoints in
Student B’s total training data were corrected.
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Fig. 3 Time-Domain Plot Before Correction
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Fig. 4 Time-Domain Plot After Correction by the Kalman
Filter

In Fig. 3, the red crosses indicate the original erroneous
values of the detected anomalies, while Fig. 4 presents
the values of these anomalies after correction.

In the time-domain analysis, the temporal
characteristics of the kicking motion—including
average kicking height and standard deviation—were

evaluated after one month and three months of training.

After one month, Student A’s average kicking height
increased by 15.9%, and the standard deviation
decreased by 11.7%. For Student B, the average kicking
height increased by 14.4%, and the standard deviation
decreased by 13.1%, indicating improved movement
stability. After three months, Student A’s average
kicking height decreased by 1.8%, with the standard
deviation remaining unchanged, while Student B’s
average kicking height increased by 6.7%, and the
standard deviation decreased by 69.6%. The significant
reduction in standard deviation for both athletes after
three months reflects a trend toward more consistent
performance.
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Fig. 5 Spectrogram of Student A’s Training Over Three
Months
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Fig. 6 Spectrogram of Student B’s Training Over Three
Months

In the frequency-domain analysis, the
frequency-domain characteristics of the kicking
motion—including dominant frequency, peak power,
spectral centroid,
compared at the beginning, after one month, and after
three months of training. After one month, Student A’s
dominant frequency decreased from 2.13 Hz to 2.06 Hz,

and spectral bandwidth—were

peak power increased from 901.25 to 981.62, spectral
centroid decreased from 0.087 to 0.077, and spectral
bandwidth increased from 8.33 Hz to 8.6 Hz. For
Student B, the dominant frequency decreased from 1.87
Hz to 1.64 Hz, peak power decreased from 3075.71 to
2693.65, spectral centroid increased from 0.183 to 0.206,
and spectral bandwidth decreased from 8.58 Hz to 6.94
Hz.

After three months, Student A’s dominant
frequency decreased from 2.13 Hz to 1.65 Hz, peak
power increased from 901.25 to 2181.18, spectral
centroid increased from 0.087 to 0.283, and spectral
bandwidth decreased from 8.33 Hz to 7.85 Hz. For
Student B, the dominant frequency decreased from 1.87
Hz to 0.1 Hz, peak power decreased from 3075.71 to
41.21, spectral centroid decreased from 0.183 to 0.025,
and spectral bandwidth decreased from 8.53 Hz to 8.33
Hz.

Based on the above results, it can be concluded
that the dominant frequency for the male student
continuously decreased, indicating a longer kicking
cycle and a slower rhythm. The significant increase in
peak power suggests improvements in both movement
stability and explosiveness. The spectral centroid
initially decreased and then increased substantially,
reflecting enhanced coordination and consistency of
movements after three months of training. The spectral
bandwidth first increased and then decreased, with the
final energy distribution becoming more concentrated
around the dominant frequency, indicating more
precise movement control.



In contrast, the female student exhibited a
substantial decrease in dominant frequency after three
months, along with marked reductions in peak power
and spectral centroid. This may reflect poor adaptation
to training or the influence of other external factors,
resulting in decreased movement performance and
stability.

IV. CONCLUSION

This study developed a Taekwondo motion analysis
workflow that integrates MediaPipe keypoint extraction,
IQR-based anomaly detection, and data refinement
using a Kalman filter. The workflow effectively
rerefining the quality of motion data, supporting
accurate downstream analysis.. The training outcomes
of athletes were quantitatively assessed through both

time-domain and  frequency-domain  analyses.
Experimental results indicate that, on average,
approximately 4.107% of keypoint data required

correction, which contributed to improved accuracy in
subsequent analyses. By further combining time-
domain and frequency-domain analyses, the training
effectiveness of the athletes was quantitatively
evaluated.

After  training, Student A  demonstrated
improvements in both kicking height and stability, with

energy distribution becoming more concentrated and
movement performance more consistent. Student B
exhibited a continuous increase in kicking height and a
marked enhancement in stability; however, after three
months, a noticeable decrease in kicking frequency was
observed, and the energy distribution became more
dispersed. Overall, both students showed progress in
movement stability and quality following training,
though the trends in their performance varied.
Therefore, coaches can design customized training
programs tailored to the specific characteristics and
needs of individual athletes.

This study utilized MediaPipe to detect Taekwondo
athletes’ kicking motions, enabling real-time acquisition
of keypoint data and subsequent motion analysis to
assist coaches in dynamically correcting athletes’
movements. Through quantitative data analysis,
coaches can more accurately assess athletes’
performance and use this information to adjust training
programs, thereby enhancing training efficiency and
movement quality. Furthermore, this automated
analytical approach facilitates long-term tracking of
athletes’ technical progress, providing a scientific basis
for Taekwondo training.
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