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Abstract—This study explores the application of
convolutional neural networks (CNNs) in financial time
series forecasting, specifically within the stock market
domain. Given the dynamic and irregular nature of stock
market data, this research proposes CNN architectures
tailored to effectively capture these patterns. The
simultaneous optimization of CNN parameters and
architectures presents a highly nonlinear and complex
problem. To address this challenge, we introduce an
iterative optimization framework leveraging genetic
algorithms (GAs) for parameter estimation. The GA-based
approach is designed to efficiently navigate the solution
space, achieving a globally optimal configuration with
accelerated convergence. Experimental results
demonstrate that incorporating both architectural and
parametric optimization significantly enhances the
model’s performance, yielding superior in-sample
estimation accuracy and improved out-of-sample next-day
stock price predictions.
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I.  INTRODUCTION

In recent years, the global economy has faced
numerous challenges, with severe issues such as
inflation and soaring housing prices significantly
impacting economic stability. These factors have led to
a continuous increase in the cost of living, making
homeownership increasingly difficult for the general
population. Against this backdrop, investing in the stock
market has emerged as a crucial means of generating
passive income, serving not only as a hedge against the
decline in real purchasing power but also as a strategy to
enhance overall financial well-being. However, stock
prices are influenced by multiple factors, including
corporate financial performance, global economic
conditions, and market sentiment, exhibiting highly
nonlinear and irregular fluctuations. These complexities
make accurate stock price prediction an exceptionally
challenging task.
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II. RELATED WORKS

A. Characteristics of the Stock Market

Before the widespread adoption of deep learning,
many researchers relied on traditional statistical
methods and time series models for stock price
prediction, such as the Autoregressive Integrated
Moving Average (ARIMA) and Generalized
Autoregressive Conditional Heteroskedasticity
(GARCH) models. While these models handle linear
data well, they struggle with nonlinear and irregular
fluctuations [1], [2]. Reference [3] applied Rough Set
Theory (RST) to extract temporal rules from stock
market data. Their findings confirmed identifiable
patterns between market indicators and stock price
movements, showing that historical market conditions
correlate with future trends.

To address the limitations of traditional time series
models, researchers have shifted toward deep learning
approaches. With powerful feature extraction and
pattern  recognition capabilities, deep learning
techniques can uncover latent relationships in large
historical datasets and effectively capture stock market
dynamics. Deep learning has been widely applied to
stock price prediction and investment analysis, showing
superior potential over traditional models.

B. Applications of Deep Learning in the Stock Market

Convolutional Neural Networks (CNNs) are a
powerful deep learning model capable of identifying
feature patterns in data[4]. With their hierarchical
architecture, CNNs learn local features and long-term
dependencies in market data, uncovering latent patterns
in price fluctuations to improve time series prediction.

However, model parameters directly affect
performance. Reference [5] showed that deeper
convolutional layers can improve model performance
but may cause overfitting when training data is limited.
Additionally, kernel size and the number of filters
influence feature extraction [6], [7]. Selecting optimal
parameters requires extensive experimentation, making
the process time-consuming.



C. Optimization Methods for Parameters and Model
Structure

To improve parameter tuning efficiency and reduce
manual effort, researchers have developed optimization
techniques to find optimal model architectures. In this
study, Genetic Algorithm (GA) is employed due to its
flexible chromosome encoding using bit arrays,
enabling it to handle both discrete and continuous
parameter spaces. Moreover, GA uses crossover and
mutation to avoid local optima and improve global
search efficiency [8], [9]. Thus, GA is well-suited for
optimizing model structure and parameters in this study.

Several studies have applied GA to optimize time
series analysis. Reference [10] used GA to optimize
CNN kernel size and filter count. Experiments showed
that GA-optimized CNNs outperformed non-optimized
models in stock market prediction, confirming GA's
effectiveness. Reference [11] proposed a GA-based
approach to tune CNN training parameters. Their study
aimed to adjust CNN hyperparameters (learning rate,
batch size, dropout rate) to improve convergence speed
and accuracy. However, no study has integrated GA
with deep learning to optimize both structural and
training parameters, highlighting its potential for further
research.

Building upon previous studies, this paper proposes
a GA-driven binary encoding approach aimed at
simultaneously optimizing both the structural and
training parameters of deep learning models through a
global search mechanism. Given the uncertainty and
volatility of the stock market, this method seeks to
develop a highly adaptive prediction model, enhancing
both forecasting accuracy and model stability.

III. MATERIALS AND METHODS

Section A explains stock market data structure and
preprocessing to prepare it for deep learning. Section B
introduces CNN fundamentals, highlighting their
applications and advantages in time series forecasting.
Section C examines how Genetic Algorithms (GA) use
binary encoding for model structures and parameters. It
also analyzes how GA optimizes configurations via
selection, crossover, and mutation to find the best
predictive model.

A. Data Acquisition and Preprocessing

This study uses the yfinance API to retrieve key
stock market data, including Date, Open, High, Low,
Close, and Volume. These indicators reflect price
fluctuations and trading dynamics, providing essential
information for stock market prediction. To ensure data
quality and model reliability, this study performs data
cleaning to address missing values, outliers, and other
factors affecting analysis, ensuring input data
completeness and accuracy.

Given the varying numerical ranges of dataset
features, standardization ensures the model processes
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feature relationships effectively while preventing data
leakage. Thus, both training and test sets are normalized
before model training. Table 1 shows the raw training
data of Apple Inc. (AAPL) stock before normalization.
The trading volume (Volume) range differs significantly
from other features, potentially causing imbalanced
weight distribution in training. This may affect model
predictive performance.

TABLE L. APPL STOCK DATA BEFORE NORMALIZATION
Date Open High Low Close Volume
2014-01-02  19.85 19.89 19.72 19.75 234684800
2014-01-03  19.75 19.77 19.30 19.32 392467600
2023-12-27  192.49 193.50 191.09 193.15 48087700
2023-12-28 194.14 194.66 193.17 193.58 34049900

This study applies Min-Max Normalization from
scikit-learn to scale data within [0,1], preserving
distribution characteristics and relative feature
relationships. The computation formula is given in (1).
Table 2 shows the normalized training data, confirming
that feature values are scaled appropriately for effective
model learning.

min

X = e
norm X —-X (1)

max min

TABLE II. APPL STOCK DATA AFTER NORMALIZATION
Date Open High Low Close Volume

2014-01-02  0.0120 0.0108 0.0116  0.0105  0.2022
2014-01-03  0.0114 0.0102 0.0093  0.0081  0.3537
2023-12-27 09693  0.9663  0.9670 0.9724  0.0230
2023-12-28 09784 09727 09786 0.9748  0.0096

To help the model learn timestep dependencies, this
study applies the Sliding Window technique. It
segments time series data into fixed-length windows,
preserving local timestep dependencies. This allows the
model to better capture dynamic patterns, improving
learning efficiency and prediction accuracy.

B. Design of Structured Deep Learning Models

1) Convolutional Neural Network

CNNs are widely used in image recognition and
financial market prediction [4]. In stock market
prediction, CNNs extract features from historical price
movements and technical indicators, adapting to market
fluctuations. The architecture in this study consists of
convolutional, flatten, and fully connected layers.
Convolutional layers capture local structures and trends,
improving pattern recognition.



To optimize performance, this study examines key
parameters, including convolutional layers, filters, and
kernel size, which affect feature extraction and learning
capacity. A GA optimizes parameters adaptively,
dynamically adjusting CNN configurations for effective
market trend learning (Fig. 1).

Flatten Fully Connected

Com2D *C

Fig. 1. Convolutional Neural Network architecture. C represents the
number of convolutional layers, K denotes the kernel size, and F
indicates the number of filters.

2) Design of Modeling Parameters

In addition to model parameters, hyperparameters
significantly impact performance. For instance, a large
learning rate may hinder convergence, while a small one
slows training. A large batch size consumes excessive
memory, whereas a small batch size causes unstable
gradients. Similarly, too many training epochs may lead
to overfitting, while too few result in underfitting. The
dropout rate also plays a key role in preventing
overfitting by randomly deactivating neurons during
training.

Given the complex interdependencies among
hyperparameters, this study employs GA for automated
search and optimization. Using a fitness function to
evaluate parameter combinations, GA applies selection,
crossover, and mutation to find the optimal
configuration, ultimately improving model predictive
accuracy.

C. Design of Genetic Algorithm

GA is a heuristic search method that simulates
biological evolution through selection, crossover, and
mutation. Using a fitness function to assess candidate
solutions, GA enables the population to evolve toward
the optimal solution [8], [9].

Since both model architecture and training
parameters are crucial to deep learning performance,

this study employs GA to optimize them simultaneously.

To enhance search efficiency, a binary encoding scheme
maps each parameter into a sequence of Os and ls,
forming a binary array that represents parameter
combinations, simulating genetic evolution (Fig. 2).
Through fitness evaluation and genetic evolution, GA
adaptively searches for the optimal CNN architecture
and training parameters, ultimately improving
prediction accuracy and generalization.
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Fig. 2. Schematic representation of the binary array in the Genetic
Algorithm

To ensure diversity in the initial population, this
study uses a Bernoulli distribution to generate initial
genes, ensuring a uniform search space. An elitism
strategy preserves the fittest individuals to accelerate
convergence. Single-point crossover enhances genetic
diversity, ~while mutation introduces random
perturbations to avoid local optima. Additionally, Mean
Squared Error (MSE) is used as the fitness function to
evaluate predictive performance, as formulated in (2).

v
MSE=—2.(y,=5) @
Nij=p7t i
To maintain a fixed-length genetic sequence, this
study enforces a uniform parameter rule, ensuring
consistent kernel size and filter count across CNN layers.
This prevents parameter mismatches, improving
stability and computational efficiency in GA-based
optimization. While simplifying the parameter space,
this design ensures consistent genetic encoding,
enhancing search reliability.

IV. EXPERIMENTS AND RESULTS

This study selects two U.S. stock market assets,
Apple Inc. (AAPL) and Meta Platforms Inc. (META),
to evaluate GA’s effectiveness in optimizing CNN
structures. Historical data are retrieved via the yfinance
API, with the training set spanning January 1, 2014, to
December 31, 2023, and 20% allocated for validation.
The test set, covering January 1, 2024, to December 31,
2024, assesses the model’s generalization ability.

For model evaluation, this study uses Root Mean
Square Error (RMSE) and Mean Absolute Percentage
Error (MAPE) as performance metrics. RMSE measures
the absolute deviation between predicted and actual
values (3), while MAPE assesses percentage error
relative to actual values, providing an intuitive measure
of predictive accuracy (4). Using these metrics, this
study evaluates the impact of GA-optimized CNNs on
AAPL and META stock forecasting and explores their
adaptability across different market conditions.
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The GA parameter design in this study is based on
the settings proposed by [12] as an initial reference. To
improve adaptability and efficiency in optimizing CNN
structures and hyperparameters, this study incorporates
parameter settings from multiple related studies,
expanding the search space for comprehensive
optimization [12]-[15]. The final GA optimization



range is determined based on these references, with predictive performance across stocks with different
detailed configurations in Table 3. volatility characteristics.

Fig. 3 compares actual stock prices of AAPL and
TABLE IIL TUNABLE PARAMETERS IN THE GA-CNN MODEL META with predictions from the baseline CNN and
GA-optimized CNN. The GA-optimized model (red X)

Parameters Value aligns more closely with actual prices (black line) than
Convolution Layers [1-3] the baseline CNN (blue square), demonstrating superior
Filters [32, 64, 128, 256] trend-capturing ability. These findings confirm the
Kernel size [1-4] effectiveness of GA-driven optimization in improving
Dropout [0-0.3] predictive accuracy and model adaptability.
Timesteps [1-16] The results indicate that GA identifies different
Batch size [16,32, 64, 128] optimal CNN structures for AAPL and META,
Learning rate [0.001, 0.01] reflecting variations in price patterns and volatility. This
Epochs [20, 30, 40, 50] underscores the importance of adaptive model design,
where CNN architecture and hyperparameters are
. tailored to each stock’s characteristics. Such flexibility

Table 4 compares the baseline CNN and GA- enables GA-CNN to maintain high predictive accuracy
optimized CNN models using RMSE and MAPE on across diverse market conditions.
training and testing datasets.

The results show that the GA-optimized CNN TABLEIV.  PERFORMANCE COMPARISON BETWEEN CNN AND
consistently outperforms the baseline CNN, achieving GA-CNN MODELS FOR APPLE INC. (AAPL) AND META PLATFORMS
lower RMSE and MAPE across both datasets. For INc. (META)

AAPL, the GA-CNN reduces training RMSE from.2:97 Training  Testing  Training  Testing
to 2.43 and testing RMSE from 4.08 to 3.05. Training Model RMSE RMSE MAPE MAPE

MAPE decreases from 2.36% to 1.88%, while testing

MAPE drops from 1.63% to 1.10%, demonstrating Apple Inc. (AAPL)

GA’s effectiveness in improving in-sample and out-of- CNN 297 4.08 2.36% 1.63%
sample accuracy. For META, similar improvements are GA-CNN 243 3.05 1.88% 1.10%
observed. The GA-CNN lowers training RMSE from Meta Platforms Inc. (META)

7.67 to 6.43 and testing RMSE from 15.02 to 11.86. CNN 7.67 15.02 2.78% 2.19%
Training MAPE decreases from 2.78% to 2.30%, while GA-CNN 6.43 11.86 2.30% 1.59%

testing MAPE drops from 2.19% to 1.59%. These
results confirm that the GA-optimized CNN enhances

(A) Apple Inc. (AAPL)
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Fig. 3. Comparison of predicted and actual stock prices using CNN and GA-CNN models.
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V.  CONCLUSIONS

This study investigates the application of Genetic
Algorithm (GA) in optimizing the architecture of
Convolutional Neural Networks (CNNs) and evaluates
its effectiveness in predicting stock prices of Apple Inc.
(AAPL) and Meta Platforms Inc. (META). By
adaptively adjusting CNN hyperparameters, including
the number of layers, kernel size, and the number of
filters, GA successfully constructs a model capable of
capturing historical market patterns and improving
forecasting accuracy.

Experimental results indicate that GA-optimized
CNNs demonstrate significant improvements in both
RMSE and MAPE metrics compared to fixed-
architecture CNNs, suggesting that GA can effectively
search for the optimal CNN structure and enhance the
model’s adaptability to market trends. Moreover, in
varying market conditions—such as the high volatility
of META and the relative stability of AAPL—the CNN
structures optimized by GA differ, indicating the
adaptability and flexibility of this approach.

However, this study has certain limitations. For
instance, GA is constrained by the search space and
computational cost. Future research could explore
Bayesian Optimization or Reinforcement Learning to
further enhance optimization efficiency. Additionally,
integrating LSTM or Transformer-based time-series
models may improve the model’s ability to capture long-
term dependencies in stock market predictions.
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